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A B S T R A C T 

Mitochondria are the most abundant organelles in mammalian oocytes and early embryos. The 

central role of mitochondria in the establishment of developmental competence of oocytes and 

early embryos come out from basic research in experimental models and clinical studies, including 

those from Assisted Reproductive Technologies (ARTs) such as in vitro fertilization and embryo 

culture. We here review major concerns about mitochondrial bioenergetic function and morphology 

as well as their involvement in oocyte and early embryo development.  
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1. Introduction 

Mitochondria are the most copious organelles in the mammalian oocytes 

and early preimplantation embryos. They are involved in the energy 

synthesis, generation of reactive oxygen species (ROS) and regulation of 

the apoptotic processes (1). The mature oocyte contains more 

mitochondria and mitochondrial DNA (mtDNA) than other cell types. 

Numerous studies considerate mitochondria as key factors of reproductive 

competence (2, 3) and as crucial determinants of physiological oogenesis 

and preimplantation embryogenesis (4).  

In humans, the female reproductive potential slowly declines from the age 

of 32 to 37, to be then followed by a rapid downfall (5, 6). Almost the half 

of meiotically mature oocytes obtained by IVF from 35 years-old women 

are aneuploid and this rate gradually increase with aging (7, 8). The 

mechanisms underlying this age-related oocyte and embryo quality 

decrease are not fully unraveled but one of the main targets of senescence 

are mitochondria, with alterations in their function and ultrastructure (9, 

10). Many studies tried to define the role of the mitochondria during 

oocyte maturation and early preimplantation embryonic development by 

correlating ATP content, meiotic and mitotic spindle organization and 

chromosomal segregation (8, 9, 11, 12).  

We here reviewed the role of mitochondria as main determinants of the 

oocyte and embryonic developmental competences as well as their clinical 

implication. 

 

2.  Mitochondria in oocytes and early preimplantation 

embryos: bioenergetics and development 

Oocytes are subjected to a complex and energy-consuming remodeling 

before ovulation and fertilization, to sustain the post-fertilization 

processes (13). Mitochondria are the primary source of ATP in the oocyte; 

their number is relevant for the bioenergetic ability of the future 

preimplantation embryo to normally develop after fertilization (14, 15). 

Since they are maternally inherited, the complement, i.e. the total number 

of mitochondria/mature oocyte at the fertilization stage, is fixed (9). Due 

to a temporarily suspension of their replication until the post implantation 

stage, the total number of mitochondria remains constant during the 

preimplantation development (16). This clearly means that the 

complement of mitochondria at fertilization is responsible for the energy 

supply during the subsequent early post-fertilization phases of the 

embryonic development, as confirmed by better developmental rates in 

human oocytes and embryos with higher ATP content (1, 2, 17).  
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The oocyte may remain in a close anoxic environment for part of its life. 

Its energy demands may be minimal and supplied by the ATP produced 

through the oxidative phosphorylation within the electron transport chain 

(ETC). The main substrate used by the oocytes is the exogenous pyruvate, 

produced by cumulus or granulosa cells, whose cytoplasmic extensions 

deeply penetrate into the ooplasm and directly communicate with the 

oolemma via gap junctions (18, 19). Other amino acids and intermediate 

metabolites are also potentially involved (20) but the glycolysis in the 

oocytes is limited by low phosphofructokinase expression (21). In early 

preimplantation embryo, the embryonic metabolism switches during the 

development, changing from a predominantly glycolytic pathway ending 

with the production of pyruvate, to a full aerobic respiration that include 

Krebs cycle and oxidative phosphorylation (3). Simultaneously to this 

metabolic transition, a morphological change is clearly identified by an 

increase in the mitochondrial cristae, the presence of a denser matrix, and 

an elongated or branched appearance. Abnormalities in the mitochondria 

ultrastructure are linked to functional alterations leading to embryo 

degeneration or death (9). 

 

 

3. Mitochondria ultrastructure evaluation in oocyte and 

early embryo 

Morphological changes affect the mitochondria and associated organelles 

in the mammalian female germ cell during oogenesis, maturation and 

fertilization (22). Transmission electron microscopy (TEM) is the gold 

standard to reveal and analyze ultrastructural differences in germ and 

somatic cells (23-33). In the primordial germ cell (PGC), rounded 

mitochondria with a pale matrix and small vesicular cristae are located 

close to the nucleus. In the early stages of mammalian oogenesis, 

aggregates of mitochondria are clustered around the nuage. In oocytes at 

the early prophase stage, mitochondria growth and align along the outer 

surface of the nuclear membrane. In this phase, they show a denser matrix 

and visible lamellar cristae (22). Oocytes of primordial and primary 

follicles have round, or irregular mitochondria clustered near the nucleus, 

with the typical arched cristae. During the follicular growth, the numerical 

density of the mitochondria gradually increases to spread in all the 

ooplasm (34). Microtubules regulate the perinuclear accumulation and the 

following cytoplasmic dispersion of mitochondria. Cumulus cells are 

essential for the mitochondrial maturation during the oogenesis. They are 

responsible for the ATP production necessary to the oocyte energy supply 

in the latest phases of oocyte maturation (35). Morphological 

characteristics of cumulus cells can be indirectly used to evaluate oocyte 

quality and its maturation. During the ovulation, mitochondria are the 

most represented organelles in the ooplasm (22, 25). They form clear 

aggregates with either the smooth endoplasmic reticulum (SER) and the 

vesicles. These so-called “mitochondria-SER aggregates” (M-SER) and 

“mitochondria-vesicle complexes” (MV) seems to be involved in the 

production of substances or membranes necessary for the subsequent 

fertilization and early embryogenesis. After fertilization, significant 

changes occur in mitochondria size and shape. In the pronuclear zygote, 

they are distributed around the pronuclei. During the first embryonic 

cleavage division, round or oval mitochondria with a dense matrix and 

few arched cristae are gradually replaced by elongated ones, with a less 

dense matrix and numerous transverse cristae (3, 36). A progressive 

reduction in size and number of M-SER aggregates and MV complexes 

was observed in the early embryos (36).  

This progressive, stage-specific ultrastructural changes of mitochondria 

during the preimplantation embryogenesis is physiological and with 

clinical significance. As a consequence, after fertilization, embryos are 

characterized by a finite number of organelles and this progenitor pool of 

non-replicating mitochondria is segregated between daughter cells at each 

division (9). The modifications in the mitochondrial fine structure, during 

the early development, are related to the progressive increase of the levels 

of respiratory activity. This would be expected to be compensatory respect 

to diminished mitochondrial number/cell in maintaining sufficient ATP 

levels to meet the increasing energy demands of the developing 

blastomeres during cleavage (15). These morphological changes result in 

a high oxidative metabolism and ATP production, influencing the oocyte 

quality and contributing to a good embryonic development (37-39). 

Mitochondria distribution is another essential factor during oocyte 

maturation and embryo development. Differently to the differentiated 

cells, the progenitor population of mitochondria in the fully-grown oocyte 

is generally uniformly distributed within the cytoplasm; subsequently, 

mitochondria are subjected to stage-specific modification in their spatial 

organization. TEM analysis of mouse and human oocytes show 

mitochondria in direct contact with the SER cisternae; moreover, small 

clusters of mitochondria surround compact assemblages of SER elements 

in the pericortical and subplasmalemmal cytoplasm (9, 40). This different 

mitochondrial distribution, mediated by calcium fluxes between these two 

organellar systems, suggest an up-regulation of mitochondrial ATP 

production (41). This peculiar spatial organization also indicates a specific 

spatial functional heterogeneity for oocyte mitochondria, which may be an 

important regulatory factor in the early embryonic development (8, 41). 

Mitochondrial ultrastructure, distribution and number could be considered 

a sign of oocyte and embryo viability. Consequently, ultrastructural 

alterations could be a possible cause of mitochondrial dysfunction. 

 

4. The role of mitochondria in the Assisted Reproductive 

Technologies (ARTs) 

The regulation of mitochondrial activity is one of the focus in ARTs, to 

clarify if the premature arrest of oocyte maturation or early embryogenesis 

can be associated with mitochondrial alterations and, therefore, to 

insufficient ATP supply (38). 

Several studies demonstrated that alterations in number, morphology and 

functionality of mitochondria, could be the cause of different 

developmental alteration during ARTs, such as: premature arrest of 

preovulatory maturation, altered organization of meiotic and mitotic 

spindles leading to chromosomal aneuploidy at MII, fertilization failure 

and arrested blastomeres division during the preimplantation phase (38, 

42-44).  

A healthy mitochondrial status of oocytes and embryos is also associated 

with the oxygen concentration used during in vitro maturation (IVM) or in 

vitro culture, that can interfere with the developmental competences (28, 

32). 

The developmental competence of oocytes matured under low oxygen 

concentration (5%) was, in fact, higher than in oocytes cultured under 
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atmospheric oxygen tension (20%) (45). Embryos cultured under a 

physiological O2 concentration (5%) showed better developmental 

performance and higher embryo production rates than those cultured 

under atmospheric O2 conditions (20%). Improved oocyte competence and 

embryo developmental rate seems to be linked to a lower reactive oxygen 

species (ROS) production under physiological oxygen conditions (46). 

 

5. Conclusions and future perspectives 

In ARTs, positive outcomes are strictly based on the proper selection of 

high-quality oocytes and embryos. Regarding the need to improve the 

embryo’s performance ability during the early developmental stages, 

mitochondrial preservation can ensure the success of ART programs. The 

developmental viability, in both oocytes and embryos, is strictly 

connected to mitochondrial activity, function, morphology and 

distribution (12, 42). The lethal levels of fragmentation are one of the 

most remarkable developmental dysfunction originating from 

mitochondria, that can be clinically treated by invasive methods (9). 

Recently, bioactive molecules are used to ameliorate mitochondrial 

function, due to their ability to provide protection against oxidative 

damage and to increase the overall efficiency of ATP production (1). 

The findings here discussed evidence the importance of further studies to 

improve activity and ultrastructural preservation of mitochondria during 

ART protocols, by optimizing culture conditions before the embryo 

transfer, especially for infertility connected to the advanced age (46-50).  
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